MULȚIMEA NUMERELOR ÎNTREGI- Pregătirea Evaluării Naționale 2020

20 puncte bonus
1 rezolvări
Romană

Autor quiz: Prof. Mihaela Molodet

  • Noțiuni de reamintit

Mulțimea numerelor întregi se notează cu 

și este mulțimea 

, 3, 2, 1, 0, +1, +2, +3, *=0

este mulțimea numerelor întregi nenule

=, 3, 2, 1

este mulțimea numerelor întregi negative

Convenție: Dacă în fața unui număr nu avem semn, înseamnă că numărul are semnul +.

 Numerele negative se reprezintă pe axa numerelor în stânga lui 0.

  • Opusul unui număr întreg

Opusul numărului întreg a este –a

Exemplu: opusul lui +2 este -2, opusul lui -3 este +3.

OBS: Punctele în care se reprezintă pe axă două numere întregi opuse, sunt simetrice ( față de origine)

Exemplu: A(2) și B(-2) , atunci B este simetricul lui A față de O.

  • Modulul unui număr întreg ( valoarea absolută)

    Modulul numărului întreg a se notează cu |a| și reprezintă distanța de la A(a) până la origine.

Exemplu: |2|=2, |-2|=2

OBS: | x | = 

x dacă x>00 dacă x=0x dacă x<0
  • Reguli de calcul cu numere întregi

În ORICE operație cu numere întregi, trebuie să stabilim SEMNUL și MODULUL!!!

  • Pentru a aduna două numere întregi cu același semn:

            păstrăm semnul

            adunăm modulele

  • Pentru a aduna două numere întregi cu semne diferite:

            păstrăm semnul celui cu modul mai mare

            scădem din modulul mai mare, modulul mai mic

  • Pentru a scădea două numere întregi:

            Adunăm primul număr cu opusul celui de-al doilea

  • Pentru a înmulți două numere întregi cu același semn

            punem semnul +

            înmulțim modulele

  • Pentru a înmulți două numere întregi cu semne diferite

            punem semnul –

            înmulțim modulele

  • Pentru a împărți două numere întregi cu același semn

            punem semnul +

            împărțim modulele

  • Pentru a împărți două numere întregi cu semne diferite

            punem semnul –

            împărțim modulele

  • Pentru a ridica la putere un număr întreg negativ:

           Punem semnul + dacă puterea este un număr par

                 Punem semnul – dacă puterea este un număr impar

                 Ridicăm la putere modulul numărului

OBS. –  Ridicarea la putere a unui număr pozitiv este, de fapt, ridicarea la putere a unui număr natural

  • Radicalul unui număr întreg are sens doar dacă acesta este pozitiv, deci natural.
  • Suma a două numere opuse este 0.
  • Reguli de calcul cu puteri

Regulile de calcul cu puteri de la numere naturale se extind la numerele întregi

Putem aplica regulile de calcul cu puteri daca avem numere opuse, mai întâi stabilim semnul.

Exemplu: 

A=27:2427 are semnul , deci 27=27A=27:24=27:24=23
  • Reguli care ușurează calculele
  • Daca avem DOAR adunări, putem ASOCIA termenii pozitivi între ei, termenii negativi între ei, apoi efectuăm calculele.

Ex. -5 + 4 + 6 + 2 – 10 – 1+3= (- 5 – 10 – 1) + ( 4+ 6+2 +3) = – 16 + 15 = – 1

  • Dacă avem DOAR înmulțiri, putem ASOCIA factorii ( înmulțitea este asociativă), semnul va fi + dacă avem număr par de factori negativi, iar dacă avem număr impar de factori negativi semnul va fi – .

Exemplu: 

7·2·6·50=7·6·2·50=42·100=4200
  • Dacă într-un produs, unul din termeni este egal cu 0, produsul este egal cu 0.

Exemplu: 

10+1·102·103··10+15 conține paranteza 1010=0, deci produsul este egal cu 0
  • Putem aplica regulile de calcul cu puteri, înaintea ordinii operațiilor

Exemplu: 

2100:2982=222=42=2
  • Observații
|x|0, x|x|=0x=0|a|=|a|, a
  • Compararea numerelor întregi
  • compararea numerelor pozitive este, de fapt, compararea numerelor naturale
  • orice număr negativ este mai mic decât 0 sau decât orice număr pozitiv
  • dintre două numere întregi negative, mai mic este cel care are modulul mai mare

OBS.:

  • dacă o inegalitate o înmulțim cu un număr pozitiv, sensul inegalității rămâne același
  • dacă o inegalitate o înmulțim cu un număr negativ, sensul inegalității se schimbă, adică  : 
 devine  devine< devine>> devine<

Exemple: 

2<1 |·(+2)4<2   25 |·(3)615
  • Riscuri (greșeli)

– să efectuăm operațiile în ordinea în care apar

KIDI- sfat: dacă avem DOAR operații de același ordin, facem calculele în ordinea în care apar!

– să nu respectăm ordinea efectuării operațiilor

KIDI- sfat: înainte de a rezolva un calcul în care apar mai multe operații, ne uităm CU MARE ATENȚIE și stabilim dacă putem aplica regulile care ușurează calculele și în ce ordine efectuăm operațiile!

– să comparăm greșit numerele negative

KIDI- sfat:  să reprezentăm pe axă numerele, iar numărul care este în stânga este mai mic.

  sau comparăm modulele și inversăm sensul inegalității

Exemplu: pentru a compara -5 cu -7, avem  5 < 7, deci -5 > -7

 

Felicitări! Ai terminat cursul!

 

„A N T R E N A M E N T U L   KIDI-10”  

SĂ VEDEM CE AI  ÎNȚELES!!!

Hey, dude! Ufo crede că ai un avatar ciudat. Fă un challenge cu el să-i schimbi părerea crocobețiană.

Cât de bun este acest test?

Click să votezi!

Fii tu primul Kidibot care votează!

Pentru că ți-a plăcut acest test ...

Dă-i un share, să răspundă și prietenii tăi!

Ne pare rău că acest quiz este atât de slab! Probabil a fost sabotat de Crocobeți!

Hai să-l îmbunătățim!

Probleme cu MULȚIMEA NUMERELOR ÎNTREGI- Pregătirea Evaluării Naționale 2020? Raportează!

Partener Principal:

Kidibot caută partener principal!

Susținători activi:

Kidibot este sustinut de OMV Petrom Kidibot este sustinut de Țara lui Andrei Kidibot este sustinut de Robofun Kidibot este sustinut de Interbrand Kidibot este sustinut de Zooku Kidibot este sustinut de Societatea Muzicala Kidibot este sustinut de Gadgetway Kidibot este sustinut de Farmaciile Richter

Edituri prietene:

Kidibot este sustinut de Editura Niculescu Kidibot este sustinut de Editura Arthur

Parteneri educaționali:

Kidibot este sustinut de Ministerul Comunicațiilor și Societății Informaționale Kidibot este sustinut de Știință și Tehnică Kidibot este sustinut de Raiffeisen Bank Kidibot este sustinut de Astroclubul Bucuresti Kidibot este sustinut de Institutul Geologic al Romaniei

Parteneri pentru românii din afara granițelor României:

Kidibot este sustinut de Ministerul pentru Rom\nii de Pretutindeni Kidibot este sustinut de FORI - Federația Organizațiilor Românești din Italia

KIDIBOT în lume:

USA | UK | CA | CH | ES | MD | IT | RO
Total time: 0.60007309913635 s